Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
J Lipid Res ; : 100542, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641009

RESUMO

Nitric oxide (NO), produced primarily by nitric oxide synthase (NOS) enzymes, is known to influence energy metabolism by stimulating fat uptake and oxidation. The effects of NO on de novo lipogenesis, however, are less clear. Here we demonstrate that hepatic expression of eNOS is reduced following prolonged administration of a hypercaloric high-fat diet. This results in marked reduction in the amount of S-nitrosylation of liver proteins including notably Acetyl-CoA Carboxylase (ACC), the rate-limiting enzyme in de novo lipogenesis. We further show that ACC S-nitrosylation markedly increases enzymatic activity. Diminished eNOS expression and ACC S-nitrosylation may thus represent a physiological adaptation to caloric excess by constraining lipogenesis. Our findings demonstrate that S-nitrosylation of liver proteins is subject to dietary control and suggest that de novo lipogenesis is coupled to dietary and metabolic conditions through ACC S-nitrosylation.

2.
Cell ; 186(26): 5812-5825.e21, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38056462

RESUMO

Acyl-coenzyme A (acyl-CoA) species are cofactors for numerous enzymes that acylate thousands of proteins. Here, we describe an enzyme that uses S-nitroso-CoA (SNO-CoA) as its cofactor to S-nitrosylate multiple proteins (SNO-CoA-assisted nitrosylase, SCAN). Separate domains in SCAN mediate SNO-CoA and substrate binding, allowing SCAN to selectively catalyze SNO transfer from SNO-CoA to SCAN to multiple protein targets, including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1). Insulin-stimulated S-nitrosylation of INSR/IRS1 by SCAN reduces insulin signaling physiologically, whereas increased SCAN activity in obesity causes INSR/IRS1 hypernitrosylation and insulin resistance. SCAN-deficient mice are thus protected from diabetes. In human skeletal muscle and adipose tissue, SCAN expression increases with body mass index and correlates with INSR S-nitrosylation. S-nitrosylation by SCAN/SNO-CoA thus defines a new enzyme class, a unique mode of receptor tyrosine kinase regulation, and a revised paradigm for NO function in physiology and disease.


Assuntos
Insulina , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Transdução de Sinais , Animais , Humanos , Camundongos , Acil Coenzima A/metabolismo , Tecido Adiposo/metabolismo , Resistência à Insulina , Óxido Nítrico/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
3.
STAR Protoc ; 4(4): 102430, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925633

RESUMO

S-nitrosothiol (SNO)-Resin Assisted Capture (SNO-RAC) relies on a Thiopropyl Sepharose resin to identify S-nitrosylated proteins (SNO-proteins) and sites of S-nitrosylation. Here, we present a protocol for preparing Thiopropyl Sepharose resin with efficiency of SNO-protein capture comparable to the discontinued commercial version. We describe steps for amine coupling, disulfide reduction, and generation of thiol reactive resin. We then detail quality control procedures. This resin is also suitable for Acyl-RAC assays to capture palmitoylated proteins. For complete details on the use and execution of the SNO-RAC protocol, please refer to Forrester et al.,1 Fonseca et al.,2 and Seth et al.3.

4.
J Med Chem ; 66(8): 5657-5668, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37027003

RESUMO

Acute kidney injury (AKI) is associated with high morbidity and mortality, and no drugs are available clinically. Metabolic reprogramming resulting from the deletion of S-nitroso-coenzyme A reductase 2 (SCoR2; AKR1A1) protects mice against AKI, identifying SCoR2 as a potential drug target. Of the few known inhibitors of SCoR2, none are selective versus the related oxidoreductase AKR1B1, limiting therapeutic utility. To identify SCoR2 (AKR1A1) inhibitors with selectivity versus AKR1B1, analogs of the nonselective (dual 1A1/1B1) inhibitor imirestat were designed, synthesized, and evaluated. Among 57 compounds, JSD26 has 10-fold selectivity for SCoR2 versus AKR1B1 and inhibits SCoR2 potently through an uncompetitive mechanism. When dosed orally to mice, JSD26 inhibited SNO-CoA metabolic activity in multiple organs. Notably, intraperitoneal injection of JSD26 in mice protected against AKI through S-nitrosylation of pyruvate kinase M2 (PKM2), whereas imirestat was not protective. Thus, selective inhibition of SCoR2 has therapeutic potential to treat acute kidney injury.


Assuntos
Injúria Renal Aguda , Oxirredutases , Camundongos , Animais , Oxirredutases/metabolismo , Coenzima A/metabolismo , Rim/metabolismo
5.
Antioxid Redox Signal ; 39(10-12): 621-634, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37053107

RESUMO

Aims: S-nitrosylation of proteins is the main mechanism through which nitric oxide (NO) regulates cellular function and likely represents the archetype redox-based signaling system across aerobic and anaerobic organisms. How NO generated by different nitric oxide synthase (NOS) isoforms leads to specificity of S-nitrosylation remains incompletely understood. This study aimed to identify proteins interacting with, and whose S-nitrosylation is mediated by, human NOS isoforms in the same cellular system, thereby illuminating the contribution of individual NOSs to specificity. Results: Of the hundreds of proteins interacting with each NOS, many were also S-nitrosylated. However, a large proportion of S-nitrosylated proteins (SNO-proteins) did not associate with NOS. Moreover, most NOS interactors and SNO-proteins were unique to each isoform. The amount of NO produced by each NOS isoform was unrelated to the numbers of SNO-proteins. Thus, NOSs promoted S-nitrosylation of largely distinct sets of target proteins. Different signaling pathways were enriched downstream of each NOS. Innovation and Conclusion: The interactomes and SNOomes of individual NOS isoforms were largely distinct. Only a small fraction of SNO-proteins interacted with their respective NOS. Amounts of S-nitrosylation were unrelated to the amount of NO generated by NOSs. These data argue against free diffusion of NO or NOS interactions as being necessary or sufficient for S-nitrosylation and favor roles for additional enzymes and/or regulatory elements in imparting SNO-protein specificity. Antioxid. Redox Signal. 39, 621-634.


Assuntos
Óxido Nítrico Sintase , Proteoma , Humanos , Proteoma/metabolismo , Óxido Nítrico Sintase/metabolismo , Oxirredução , Transdução de Sinais , Óxido Nítrico/metabolismo , Isoformas de Proteínas/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(9): e2220769120, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36812211

RESUMO

S-Nitrosohemoglobin (SNO-Hb) is unique among vasodilators in coupling blood flow to tissue oxygen requirements, thus fulfilling an essential function of the microcirculation. However, this essential physiology has not been tested clinically. Reactive hyperemia following limb ischemia/occlusion is a standard clinical test of microcirculatory function, which has been ascribed to endothelial nitric oxide (NO). However, endothelial NO does not control blood flow governing tissue oxygenation, presenting a major quandary. Here we show in mice and humans that reactive hyperemic responses (i.e., reoxygenation rates following brief ischemia/occlusion) are in fact dependent on SNO-Hb. First, mice deficient in SNO-Hb (i.e., carrying C93A mutant Hb refractory to S-nitrosylation) showed blunted muscle reoxygenation rates and persistent limb ischemia during reactive hyperemia testing. Second, in a diverse group of humans-including healthy subjects and patients with various microcirculatory disorders-strong correlations were found between limb reoxygenation rates following occlusion and both arterial SNO-Hb levels (n = 25; P = 0.042) and SNO-Hb/total HbNO ratios (n = 25; P = 0.009). Secondary analyses showed that patients with peripheral artery disease had significantly reduced SNO-Hb levels and blunted limb reoxygenation rates compared with healthy controls (n = 8 to 11/group; P < 0.05). Low SNO-Hb levels were also observed in sickle cell disease, where occlusive hyperemic testing was deemed contraindicated. Altogether, our findings provide both genetic and clinical support for the role of red blood cells in a standard test of microvascular function. Our results also suggest that SNO-Hb is a biomarker and mediator of blood flow governing tissue oxygenation. Thus, increases in SNO-Hb may improve tissue oxygenation in patients with microcirculatory disorders.


Assuntos
Hiperemia , Humanos , Camundongos , Animais , Microcirculação , Hemoglobinas/genética , Eritrócitos/fisiologia , Oxigênio , Sujeitos da Pesquisa , Óxido Nítrico/fisiologia
7.
Cell Rep ; 41(4): 111538, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288700

RESUMO

Accumulating evidence suggests that protein S-nitrosylation is enzymatically regulated and that specificity in S-nitrosylation derives from dedicated S-nitrosylases and denitrosylases that conjugate and remove S-nitrosothiols, respectively. Here, we report that mice deficient in the protein denitrosylase SCoR2 (S-nitroso-Coenzyme A Reductase 2; AKR1A1) exhibit marked reductions in serum cholesterol due to reduced secretion of the cholesterol-regulating protein PCSK9. SCoR2 associates with endoplasmic reticulum (ER) secretory machinery to control an S-nitrosylation cascade involving ER cargo-selection proteins SAR1 and SURF4, which moonlight as S-nitrosylases. SAR1 acts as a SURF4 nitrosylase and SURF4 as a PCSK9 nitrosylase to inhibit PCSK9 secretion, while SCoR2 counteracts nitrosylase activity by promoting PCSK9 denitrosylation. Inhibition of PCSK9 by an NO-based drug requires nitrosylase activity, and small-molecule inhibition of SCoR2 phenocopies the PCSK9-mediated reductions in cholesterol observed in SCoR2-deficient mice. Our results reveal enzymatic machinery controlling cholesterol levels through S-nitrosylation and suggest a distinct treatment paradigm for cardiovascular disease.


Assuntos
Pró-Proteína Convertase 9 , S-Nitrosotióis , Camundongos , Animais , Proteínas/metabolismo , Oxirredutases/metabolismo , S-Nitrosotióis/metabolismo , Homeostase , Óxido Nítrico/metabolismo , Proteínas de Membrana
8.
Mol Cell ; 82(16): 3089-3102.e7, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35931084

RESUMO

The ß2-adrenergic receptor (ß2AR), a prototypic G-protein-coupled receptor (GPCR), is a powerful driver of bronchorelaxation, but the effectiveness of ß-agonist drugs in asthma is limited by desensitization and tachyphylaxis. We find that during activation, the ß2AR is modified by S-nitrosylation, which is essential for both classic desensitization by PKA as well as desensitization of NO-based signaling that mediates bronchorelaxation. Strikingly, S-nitrosylation alone can drive ß2AR internalization in the absence of traditional agonist. Mutant ß2AR refractory to S-nitrosylation (Cys265Ser) exhibits reduced desensitization and internalization, thereby amplifying NO-based signaling, and mice with Cys265Ser mutation are resistant to bronchoconstriction, inflammation, and the development of asthma. S-nitrosylation is thus a central mechanism in ß2AR signaling that may be operative widely among GPCRs and targeted for therapeutic gain.


Assuntos
Asma , Animais , Asma/induzido quimicamente , Asma/genética , Camundongos , Transdução de Sinais
9.
J Pharmacol Exp Ther ; 382(1): 1-10, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35512801

RESUMO

Classic physiology links tissue hypoxia to oxygen delivery through control of microvascular blood flow (autoregulation of blood flow). Hemoglobin (Hb) serves both as the source of oxygen and the mediator of microvascular blood flow through its ability to release vasodilatory S-nitrosothiol (SNO) in proportion to degree of hypoxia. ß-globin Cys93Ala (ßCys93Ala) mutant mice deficient in S-nitrosohemoglobin (SNO-Hb) show profound deficits in microvascular blood flow and tissue oxygenation that recapitulate microcirculatory dysfunction in multiple clinical conditions. However, the means to replete SNO in mouse red blood cells (RBCs) to restore RBC function is not known. In particular, although methods have been developed to selectively S-nitrosylate ßCys93 in human Hb and intact human RBCs, conditions have not been optimized for mouse RBCs that are used experimentally. Here we show that loading SNO onto Hb in mouse RBC lysates can be achieved with high stoichiometry and ß-globin selectivity. However, S-nitrosylation of Hb within intact mouse RBCs is ineffective under conditions that work well with human RBCs, and levels of metHb are prohibitively high. We developed an optimized method that loads SNO in mouse RBCs to maintain vasodilation under hypoxia and shows that loss of SNO loading in ßCys93Ala mutant RBCs results in reduced vasodilation. We also demonstrate that differences in SNO/met/nitrosyl Hb stoichiometry can account for differences in RBC function among studies. RBCs loaded with quasi-physiologic amounts of SNO-Hb will produce vasodilation proportionate to hypoxia, whereas RBCs loaded with higher amounts lose allosteric regulation, thus inducing vasodilation at both high and low oxygen level. SIGNIFICANCE STATEMENT: Red blood cells from mice exhibit poor hemoglobin S-nitrosylation under conditions used for human RBCs, frustrating tests of vasodilatory activity. Using an optimized S-nitrosylation protocol, mouse RBCs exhibit hypoxic vasodilation that is significantly reduced in hemoglobin ßCys93Ala mutant RBCs that cannot carry S-nitrosothiol allosterically, providing genetic validation for the role of ßCys93 in oxygen delivery.


Assuntos
S-Nitrosotióis , Vasodilatação , Animais , Eritrócitos , Hemoglobinas , Hipóxia , Camundongos , Microcirculação , Óxido Nítrico , Oxigênio , Vasodilatação/fisiologia , Globinas beta/genética
10.
Sci Rep ; 12(1): 6639, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459243

RESUMO

Current human donor care protocols following death by neurologic criteria (DNC) can stabilize macro-hemodynamic parameters but have minimal ability to preserve systemic blood flow and microvascular oxygen delivery. S-nitrosylated hemoglobin (SNO-Hb) within red blood cells (RBCs) is the main regulator of tissue oxygenation (StO2). Based on various pre-clinical studies, we hypothesized that brain death (BD) would decrease post-mortem SNO-Hb levels to negatively-impact StO2 and reduce organ yields. We tracked SNO-Hb and tissue oxygen in 61 DNC donors. After BD, SNO-Hb levels were determined to be significantly decreased compared to healthy humans (p = 0·003) and remained reduced for the duration of the monitoring period. There was a positive correlation between SNO-Hb and StO2 (p < 0.001). Furthermore, SNO-Hb levels correlated with and were prognostic for the number of organs transplanted (p < 0.001). These clinical findings provide additional support for the concept that BD induces a systemic impairment of S-nitrosylation that negatively impacts StO2 and reduces organ yield from DNC human donors. Exogenous S-nitrosylating agents are in various stages of clinical development. The results presented here suggest including one or more of these agents in donor support regimens could increase the number and quality of organs available for transplant.


Assuntos
Hemoglobinas , Oxigênio , Eritrócitos , Hemodinâmica , Hemoglobinas/metabolismo , Hemoglobinas/farmacologia , Humanos , Nitrosação
11.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34914637

RESUMO

Systemic hypoxia is characterized by peripheral vasodilation and pulmonary vasoconstriction. However, the system-wide mechanism for signaling hypoxia remains unknown. Accumulating evidence suggests that hemoglobin (Hb) in RBCs may serve as an O2 sensor and O2-responsive NO signal transducer to regulate systemic and pulmonary vascular tone, but this remains unexamined at the integrated system level. One residue invariant in mammalian Hbs, ß-globin cysteine93 (ßCys93), carries NO as vasorelaxant S-nitrosothiol (SNO) to autoregulate blood flow during O2 delivery. ßCys93Ala mutant mice thus exhibit systemic hypoxia despite transporting O2 normally. Here, we show that ßCys93Ala mutant mice had reduced S-nitrosohemoglobin (SNO-Hb) at baseline and upon targeted SNO repletion and that hypoxic vasodilation by RBCs was impaired in vitro and in vivo, recapitulating hypoxic pathophysiology. Notably, ßCys93Ala mutant mice showed marked impairment of hypoxic peripheral vasodilation and developed signs of pulmonary hypertension with age. Mutant mice also died prematurely with cor pulmonale (pulmonary hypertension with right ventricular dysfunction) when living under low O2. Altogether, we identify a major role for RBC SNO in clinically relevant vasodilatory responses attributed previously to endothelial NO. We conclude that SNO-Hb transduces the integrated, system-wide response to hypoxia in the mammalian respiratory cycle, expanding a core physiological principle.


Assuntos
Cistatina C/genética , DNA/genética , Hemoglobinas/metabolismo , Hipertensão Pulmonar/genética , Hipóxia/complicações , Mutação , Vasodilatação/fisiologia , Animais , Cistatina C/metabolismo , Análise Mutacional de DNA , Modelos Animais de Doenças , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/fisiopatologia , Hipóxia/genética , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes
12.
Nat Rev Endocrinol ; 18(2): 111-128, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34789923

RESUMO

Insulin, which is released by pancreatic islet ß-cells in response to elevated levels of glucose in the blood, is a critical regulator of metabolism. Insulin triggers the uptake of glucose and fatty acids into the liver, adipose tissue and muscle, and promotes the storage of these nutrients in the form of glycogen and lipids. Dysregulation of insulin synthesis, secretion, transport, degradation or signal transduction all cause failure to take up and store nutrients, resulting in type 1 diabetes mellitus, type 2 diabetes mellitus and metabolic dysfunction. In this Review, we make the case that insulin signalling is intimately coupled to protein S-nitrosylation, in which nitric oxide groups are conjugated to cysteine thiols to form S-nitrosothiols, within effectors of insulin action. We discuss the role of S-nitrosylation in the life cycle of insulin, from its synthesis and secretion in pancreatic ß-cells, to its signalling and degradation in target tissues. Finally, we consider how aberrant S-nitrosylation contributes to metabolic diseases, including the roles of human genetic mutations and cellular events that alter S-nitrosylation of insulin-regulating proteins. Given the growing influence of S-nitrosylation in cellular metabolism, the field of metabolic signalling could benefit from renewed focus on S-nitrosylation in type 2 diabetes mellitus and insulin-related disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Células Secretoras de Insulina/metabolismo , Óxido Nítrico , Compostos de Sulfidrila
13.
Mol Aspects Med ; 84: 101056, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34852941

RESUMO

The allosteric transition within tetrameric hemoglobin (Hb) that allows both full binding to four oxygen molecules in the lung and full release of four oxygens in hypoxic tissues would earn Hb the moniker of 'honorary enzyme'. However, the allosteric model for oxygen binding in hemoglobin overlooked the essential role of blood flow in tissue oxygenation that is essential for life (aka autoregulation of blood flow). That is, blood flow, not oxygen content of blood, is the principal determinant of oxygen delivery under most conditions. With the discovery that hemoglobin carries a third biologic gas, nitric oxide (NO) in the form of S-nitrosothiol (SNO) at ß-globin Cys93 (ßCys93), and that formation and export of SNO to dilate blood vessels are linked to hemoglobin allostery through enzymatic activity, this title is honorary no more. This chapter reviews evidence that hemoglobin formation and release of SNO is a critical mediator of hypoxic autoregulation of blood flow in tissues leading to oxygen delivery, considers the physiological implications of a 3-gas respiratory cycle (O2/NO/CO2) and the pathophysiological consequences of its dysfunction. Opportunities for therapeutic intervention to optimize oxygen delivery at the level of tissue blood flow are highlighted.


Assuntos
S-Nitrosotióis , Vasodilatação , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Humanos , Hipóxia/metabolismo , Oxigênio , S-Nitrosotióis/metabolismo , Vasodilatação/fisiologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-34790976

RESUMO

S-nitrosoglutathione reductase (GSNOR) is a denitrosylase enzyme responsible for reverting protein S-nitrosylation (SNO). In this issue, Salerno et al. [1] provide evidence that GSNOR deficiency - and thus elevated protein S-nitrosylation - accelerates cardiomyocyte differentiation and maturation of induced pluripotent stem cells (iPSCs). GSNOR inhibition (GSNOR-/- iPSCs) expedites the epithelial-mesenchymal transition (EMT) and promotes cardiomyocyte progenitor cell proliferation, differentiation, and migration. These findings are consistent with emerging roles for protein S-nitrosylation in developmental biology (including cardiomyocyte development), aging/longevity, and cancer.

15.
Antioxidants (Basel) ; 10(10)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34679661

RESUMO

Thiol-NO adducts such as S-nitrosoglutathione (GSNO) are endogenous bronchodilators in human airways. Decreased airway S-nitrosothiol concentrations are associated with asthma. Nitric oxide (NO), a breakdown product of GSNO, is measured in exhaled breath as a biomarker in asthma; an elevated fraction of expired NO (FENO) is associated with asthmatic airway inflammation. We hypothesized that FENO could reflect airway S-nitrosothiol concentrations. To test this hypothesis, we first studied the relationship between mixed expired NO and airway S-nitrosothiols in patients endotracheally intubated for respiratory failure. The inverse (Lineweaver-Burke type) relationship suggested that expired NO could reflect the rate of pulmonary S-nitrosothiol breakdown. We thus studied NO evolution from the lungs of mice (GSNO reductase -/-) unable reductively to catabolize GSNO. More NO was produced from GSNO in the -/- compared to wild type lungs. Finally, we formally tested the hypothesis that airway GSNO increases FENO using an inhalational challenge model in normal human subjects. FENO increased in all subjects tested, with a median t1/2 of 32.0 min. Taken together, these data demonstrate that FENO reports, at least in part, GSNO breakdown in the lungs. Unlike GSNO, NO is not present in the lungs in physiologically relevant concentrations. However, FENO following a GSNO challenge could be a non-invasive test for airway GSNO catabolism.

16.
STAR Protoc ; 2(2): 100547, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34095861

RESUMO

Post-translational modification by S-nitrosylation regulates numerous cellular functions and impacts most proteins across phylogeny. We describe a protocol for isolating S-nitrosylated proteins (SNO-proteins) from C. elegans, suitable for assessing SNO levels of individual proteins and of the global proteome. This protocol features efficient nematode lysis and SNO capture, while protection of SNO proteins from degradation is the major challenge. This protocol can be adapted to mammalian tissues. For complete information on the generation and use of this protocol, please refer to Seth et al. (2019).


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/química , Proteoma , Proteômica/métodos , Animais , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/isolamento & purificação , Nitrosação , Proteoma/análise , Proteoma/química , Proteoma/isolamento & purificação , S-Nitrosotióis
17.
Cell ; 184(10): 2715-2732.e23, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852912

RESUMO

Traumatic brain injury (TBI) is the largest non-genetic, non-aging related risk factor for Alzheimer's disease (AD). We report here that TBI induces tau acetylation (ac-tau) at sites acetylated also in human AD brain. This is mediated by S-nitrosylated-GAPDH, which simultaneously inactivates Sirtuin1 deacetylase and activates p300/CBP acetyltransferase, increasing neuronal ac-tau. Subsequent tau mislocalization causes neurodegeneration and neurobehavioral impairment, and ac-tau accumulates in the blood. Blocking GAPDH S-nitrosylation, inhibiting p300/CBP, or stimulating Sirtuin1 all protect mice from neurodegeneration, neurobehavioral impairment, and blood and brain accumulation of ac-tau after TBI. Ac-tau is thus a therapeutic target and potential blood biomarker of TBI that may represent pathologic convergence between TBI and AD. Increased ac-tau in human AD brain is further augmented in AD patients with history of TBI, and patients receiving the p300/CBP inhibitors salsalate or diflunisal exhibit decreased incidence of AD and clinically diagnosed TBI.


Assuntos
Doença de Alzheimer/etiologia , Doença de Alzheimer/prevenção & controle , Lesões Encefálicas Traumáticas/complicações , Neuroproteção , Proteínas tau/metabolismo , Acetilação , Doença de Alzheimer/metabolismo , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Biomarcadores/sangue , Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Linhagem Celular , Diflunisal/uso terapêutico , Feminino , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora) , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Salicilatos/uso terapêutico , Sirtuína 1/metabolismo , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/metabolismo , Proteínas tau/sangue
18.
Ann Surg ; 274(6): e610-e615, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31804390

RESUMO

OBJECTIVE: To determine if addition of the S-nitrosylating agent ethyl nitrite (ENO) to the preservation solution can improve perfusion parameters in pumped human kidneys. BACKGROUND: A significant percentage of actively stored kidneys experience elevations in resistance and decreases in flow rate during the ex vivo storage period. Preclinical work indicates that renal status after brain death is negatively impacted by inflammation and reduced perfusion-processes regulated by protein S-nitrosylation. To translate these findings, we added ENO to the preservation solution in an attempt to reverse the perfusion deficits observed in nontransplanted pumped human kidneys. METHODS: After obtaining positive proof-of-concept results with swine kidneys, we studied donated human kidneys undergoing hypothermic pulsatile perfusion deemed unsuitable for transplantation. Control kidneys continued to be pumped a 4°C (ie, standard of care). In the experimental group, the preservation solution was aerated with 50 ppm ENO in nitrogen. Flow rate and perfusion were recorded for 10 hours followed by biochemical analysis of the kidney tissue. RESULTS: In controls, perfusion was constant during the monitoring period (ie, flow rate remained low and resistance stayed high). In contrast, the addition of ENO produced significant and sustained reductions in resistance and increases in flow rate. ENO-treated kidneys had higher levels of cyclic guanosine monophosphate, potentially explaining the perfusion benefits, and increased levels of interleukin-10, suggestive of an anti-inflammatory effect. CONCLUSIONS: S-Nitrosylation therapy restored the microcirculation and thus improved overall organ perfusion. Inclusion of ENO in the renal preservation solution holds promise to increase the number and quality of kidneys available for transplant.


Assuntos
Rim/irrigação sanguínea , Microcirculação , Nitritos/administração & dosagem , Soluções para Preservação de Órgãos/administração & dosagem , Preservação de Órgãos/métodos , Animais , GMP Cíclico/metabolismo , Humanos , Interleucina-10/metabolismo , Rim/metabolismo , Óxido Nítrico/metabolismo , Estudo de Prova de Conceito , Suínos
19.
Antioxid Redox Signal ; 34(12): 936-961, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32597195

RESUMO

Significance: Red blood cell (RBC)-mediated vasodilation plays an important role in oxygen delivery. This occurs through hemoglobin actions, at least in significant part, to convert heme-bound nitric oxide (NO) (in tense [T]/deoxygenated-state hemoglobin) into vasodilator S-nitrosothiol (SNO) (in relaxed [R]/oxygenated-state hemoglobin), convey SNO through the bloodstream, and release it into tissues to increase blood flow. The coupling of hemoglobin R/T state allostery, both to NO conversion into SNO and to SNO release (along with oxygen), under hypoxia supports the model of a three-gas respiratory cycle (O2/NO/CO2). Recent Advances: Oxygenation of tissues is dependent on a single, strictly conserved Cys residue in hemoglobin (ßCys93). Hemoglobin couples SNO formation/release at ßCys93 to O2 binding/release at hemes ("thermodynamic linkage"). Mice bearing ßCys93Ala hemoglobin that is unable to generate SNO-ßCys93 establish that SNO-hemoglobin is important for R/T allostery-regulated vasodilation by RBCs that couple blood flow to tissue oxygenation. Critical Issues: The model for RBC-mediated vasodilation originally proposed by Stamler et al. in 1996 has been largely validated: SNO-ßCys93 forms in vivo, dilates blood vessels, and is hypoxia-regulated, and RBCs actuate vasodilation proportionate to hypoxia. Numerous compensations in ßCys93Ala animals to alleviate tissue hypoxia (discussed herein) are predicted to preserve vasodilatory responses of RBCs but impair linkage to R/T transition in hemoglobin. This is borne out by loss of responsivity of mutant RBCs to oxygen, impaired blood flow responses to hypoxia, and tissue ischemia in ßCys93-mutant animals. Future Directions: SNO-hemoglobin mediates hypoxic vasodilation in the respiratory cycle. This fundamental physiology promises new insights in vascular diseases and blood disorders.


Assuntos
Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Vasodilatação/genética , Globinas beta/genética , Animais , Eritrócitos/patologia , Técnicas de Introdução de Genes , Hemoglobinas/genética , Humanos , Camundongos , Óxido Nítrico/genética , Oxigênio/metabolismo , S-Nitrosotióis/uso terapêutico , Globinas beta/metabolismo
20.
EMBO Rep ; 22(1): e50500, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33245190

RESUMO

The denitrosylase S-nitrosoglutathione reductase (GSNOR) has been suggested to sustain mitochondrial removal by autophagy (mitophagy), functionally linking S-nitrosylation to cell senescence and aging. In this study, we provide evidence that GSNOR is induced at the translational level in response to hydrogen peroxide and mitochondrial ROS. The use of selective pharmacological inhibitors and siRNA demonstrates that GSNOR induction is an event downstream of the redox-mediated activation of ATM, which in turn phosphorylates and activates CHK2 and p53 as intermediate players of this signaling cascade. The modulation of ATM/GSNOR axis, or the expression of a redox-insensitive ATM mutant influences cell sensitivity to nitrosative and oxidative stress, impairs mitophagy and affects cell survival. Remarkably, this interplay modulates T-cell activation, supporting the conclusion that GSNOR is a key molecular effector of the antioxidant function of ATM and providing new clues to comprehend the pleiotropic effects of ATM in the context of immune function.


Assuntos
Aldeído Oxirredutases , Mitofagia , Aldeído Oxirredutases/metabolismo , Senescência Celular , Oxirredução , Estresse Oxidativo/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...